
Performance Evaluation of a Sum Error Detection
Scheme for Decimal Arithmetic

Clara Schaertl Short and Earl E. Swartzlander, Jr.
Department of Electrical and Computer Engineering

University of Texas at Austin, Austin, TX 78712
Email: clarity@utexas.edu, eswartzla@aol.com

Abstract—Vázquez and Antelo’s modified long-residue checker
(LRC) for detecting errors in mixed binary/decimal addition and
subtraction is evaluated for performance and correctness. The
proposed design is shown not to detect a certain class of errors,
and a corrected design is presented. The first available post-
route area and delay figures for this design are obtained in a
32/28nm technology. The proposed checker’s area savings and
delay penalty (compared to a dual-modular redundant adder) are
much smaller than predicted, suggesting that the digit corrections
required to make an LRC scheme compatible with decimal
addition are roughly as complex as decimal addition itself.

Index Terms—Adders, CMOS integrated circuits, digital arith-
metic, integrated circuit reliability, logic design.

I. INTRODUCTION AND RELATED WORK

As CMOS logic densities increase and transistor sizes
decrease, online error detection is becoming more and more
important for acceptable reliability. The long residue checker
(LRC) circuit [1] detects all errors in a fixed-point adder with
a simple carry-save addition between the operands and the
one’s complement of the result. For two addends X and Y :

SV = X ⊕ Y ⊕ S
CV = XY ∨ (X ∨ Y)S

The carry term 2 × CV is equal to the one’s complement of
the sum term SV if and only if the adder output is correct:

X + Y = S

X + Y + S = S + S

SV + 2× CV = 111 · · · 12
SV + 2× CV = SV + SV

2× CV = SV (1)

The identity in (1) holds for all values of X and Y ,
resulting in robust error detection, and can be checked using
only bitwise operations (i.e. an array of full adders with no
carry propagation required), reducing the area needed for error
checking compared to a dual-modular redundant (DMR) adder.

A. Two’s-Complement Binary Error Checking

(1) may be extended to support two’s-complement arith-
metic by conditionally complementing Y at the input of the

carry-save adder and by appending a carry-in bit to CV at the
output of the carry-save adder:

Y B = Y ⊕ sub
SV = X ⊕ Y B ⊕ S
CV = XY B ∨ (X ∨ Y B)S

For two’s-complement subtraction, i.e. sub = 1:

X − Y = S

X − Y − S = 0

X + (Y + 1) + (S + 1) = 0

(X + Y B + S) + 1 = −1
(SV + 2× CV) + sub = 111 · · · 12
SV + 2× CV + sub = SV + SV

2× CV + sub = SV (2)

For two’s-complement addition, sub = 0, and (2) becomes
equivalent to (1).

B. Ten’s-Complement Decimal Error Checking

Vázquez and Antelo [2] describe an LRC-based error
checker modified to support ten’s-complement binary-coded
decimal (BCD) arithmetic. Let F be the (pseudo)-BCD value
whose binary representation is all ones, i.e. F =

∑
i 15×10i.

Ten’s-complement addition may be checked with:

X + Y = S

X + Y − S = 0

X + Y + (F − S) = F

X + Y + S = F (3)

and continuing as in (1). Subtraction may be checked with:

X − Y = S

X − Y − S = 0

X − Y + S = F

X + (Y D + sub) + S = F (4)

and continuing as in (2), where Y D is the conditional nine’s
complement of Y :

Y D
i =

{
Yi, sub = 0

Yi + 6, sub = 1
(5)

mailto:clarity@utexas.edu
mailto:eswartzla@aol.com

To calculate the left-hand side of (4) without carry propaga-
tion, [2] describes three correction steps. First, the carry-in
signal to each digit is eliminated by approximating the carry
function

Ci+1 = (Xi + Y D
i + Ci ≥ 10)

with the alive (i.e. carry-propagate) function

Ai = (Xi + Y D
i ≥ 9). (6)

Second, the carry-out signal from each digit is eliminated
by adding 6 to each decimal digit where Ai = 1. Finally,
the error introduced by substituting Ai for Ci+1 is corrected
by subtracting 6 from each decimal digit Si where Ai = 1
and Ci+1 = 0. Since the only possible values for Si when
Ai = 1 are 9 (when Ci+1 = 0) and 0 (when Ci+1 = 1), this
last correction is implemented as a simple conditional bitwise
operation [2, Fig. 5(c)]:

SB
i = Si ∧

{
10012, Ai = 1 and Si,3 = 1

11112, Ai = 0 or Si,3 = 0
(7)

Continuing from (4), the carry-save addition becomes:

X + (Y D + sub) + SB = F (8)
SV + 2× CV + sub = F

2× CV + sub = SV

which is identical to (2).
The proposed architecture is presented along with a set of

favorable area and delay estimates. However, these estimates
are hand-calculated and given in terms of FO4 inverter delays
and NAND2 cell areas1 for a generic CMOS technology. No
reference implementation is provided.

II. METHODS

All code described in this section will be made available
under the MIT License at https://arith.cshort.io/ following
publication.

A. Implementation

A parameterized Verilog model is developed for the “mixed
binary/BCD addition/subtraction error checker” described
above and in [2, Sec. II-C] . The checker itself is fairly
straightforward (less than 50 lines of code), but the adder being
checked (and, by extension, the error checker’s testbench)
requires additional effort, as Verilog lacks native support for
BCD arithmetic. The $sformat and $sscanf system tasks
[4, Clause 17.2] can convert an integer to a hexadecimal string
and read it back as a decimal value in testbench code, but
are obviously not synthesizable. Instead, a ten’s-complement
binary/BCD adder similar to [5] is implemented, consisting of
a digit-wise addition stage, a carry-propagation stage, and a
final digit-correction stage.

1One FO4 delay is the delay of a minimum-size inverter with a fan-out
of four minimum-size inverters; one NAND2 area is the area of the standard
cell that implements a minimum-size two-input NAND gate. The Synopsys
32/28nm educational library [3] has a nominal FO4 delay of 0.03 ns and a
NAND2 area of 2.54 µm2.

This poses another implementation problem: while the first
and last stages are simple (again, only about 50 lines of
code), the available synthesis tools only infer efficient carry-
lookahead circuits as part of their proprietary datapath IP,
which lacks integer BCD arithmetic blocks. An additional
Verilog model is implemented that generates synthesizable
Ladner-Fischer trees is implemented and used in its minimum-
depth configuration for both the binary and BCD adders. This
model improves on previously available implementations such
as [6] by supporting any power-of-two bit width, providing an
adjustable tradeoff between gate count and logic depth, and
having a simple recursive structure that corresponds directly
to the original figures in [7].

B. Validation

The adders are validated through exhaustive simulation at
an input width of 16 bits (4 decimal digits), which is sufficient
to exercise all the bitwise and digit-wise logic in the adder, as
well as the base case and both recursive cases for the Ladner-
Fischer tree generator. Validating both addition and subtraction
this way requires (104)2 × 2 = 2 × 108 BCD test cases (or
about 20 minutes of simulation time) and (216)2×2 ≈ 9×109
binary test cases (or an overnight simulation run). The error
checkers are validated during the same simulation runs; in
each test case, the input to the error checker is the correct
sum XORed with a random error value, which is zero (i.e. no
error) in 50% of the test cases and uniformly distributed in
the other 50%.

C. Performance Evaluation

The design is synthesized, placed, and routed using the
Synopsys 32/28nm Educational Design Kit [3] at widths from
32 to 512 bits. Mixed binary/BCD adders are synthesized
with no error checking, with dual-modular redundancy, and
with the proposed error checker. For comparison purposes,
a non-redundant, minimum-depth Ladner-Fischer adder [7]
is also synthesized, as well as a fast parallel-prefix adder
from Synopsys’s DesignWare library [8]. BCD support is not
implemented in the latter two adders.

III. RESULTS

A. Validation

Although the 16-bit (4-digit) simulation does not exhaus-
tively verify the error checkers, it does identify one type
of error that is not detected by the proposed architecture.
Specifically, errors that change a sum digit Si from 9 to an
invalid BCD value, e.g., flipping a bit from 10012 = 910 to
11012 = 1310, are masked by the digit-wise sum correction
step. This class of errors can be detected by replacing the
AND operation in (7) with an exclusive-OR, ensuring that
SB
i is unique for each Si:

SB
i = Si ⊕

{
01102, Ai = 1 and Si,3 = 1

00002, Ai = 0 or Si,3 = 0

A second run of the 16-bit simulation described in Section
II-B, followed by an exhaustive simulation of the checker

https://arith.cshort.io/

TABLE I
POST-ROUTE DELAY (ns)

Adder Checker
Width (bits)

32 64 128 256 512
Ladner-Fischer None 0.59 0.68 0.77 0.89 1.01

DesignWare None 0.55 0.66 0.74 0.86 1.00

Binary/BCD
None 0.99 1.12 1.20 1.33 1.47
DMR 1.26 1.41 1.57 1.75 2.01
LRC 1.43 1.55 1.76 1.93 2.16

TABLE II
POST-ROUTE CELL AREA (µm2 × 1000)

Adder Checker
Width (bits)

32 64 128 256 512
Ladner-Fischer None 0.92 1.93 4.16 8.30 17.85

DesignWare None 1.07 2.38 4.61 9.29 20.02

Binary/BCD
None 1.49 3.03 5.81 11.9 24.06
DMR 3.16 6.25 12.09 24.36 49.95
LRC 2.93 6.04 11.65 23.84 48.77

alone at a width of 8 bits, shows no remaining false negatives
and no false positives.

B. Performance Evaluation

Tables I and II show the post-route delay (in nanoseconds)
and cell area (in thousands of square microns) of each adder;
Figures 1 and 2 show the delay and area of each adder relative
to a non-redundant binary/BCD adder of the same width.
Solid lines indicate actual results, while dashed lines indicate
predicted results from [2]. Filled markers indicate binary/BCD
adders, while outlined markers indicate binary-only adders.

Adding DMR error checking to a mixed binary/BCD adder
increases cell area by 105%–113% and delay by 26%–37%,
while adding LRC error checking increases cell area by 98%–
103% and delay by 39%–47%. Replacing a DMR checker
with an LRC checker saves 5%–15% of the original (non-
redundant) adder’s area, at the cost of an additional 10%–

32 bits 64 bits 128 bits 256 bits 512 bits
0×

0.5×

1×

1.5×

2×

DesignWare Ladner-Fischer Binary/BCD
With DMR With LRC (Predicted)

Fig. 1. Delay results relative to a non-redundant binary/BCD adder.

32 bits 64 bits 128 bits 256 bits 512 bits
0×

0.5×

1×

1.5×

2×

2.5×

DesignWare Ladner-Fischer Binary/BCD
With DMR With LRC (Predicted)

Fig. 2. Area results relative to a non-redundant binary/BCD adder.

LRCDMR
0

2

4

6

8

10

12 0.37

5.065.11

1.071.12

5.525.49

A
re

a
(µ
m

2
×

10
00

)

Carry Propagation
Digit-Wise Logic
Equality Testing
Protected Adder

Fig. 3. Area distribution for 128-bit redundant adders.

17% increase in delay. For non-redundant binary adders, the
minimum-depth Ladner-Fischer adder uses 10%–19% less area
than the fast pparch implementation of the DesignWare
adder, at the cost of only 1%–9% greater delay.

Figure 3 shows the distribution of cell area in the DMR
and LRC versions of a 128-bit adder. The area required for
digit-by-digit computations (e.g. SV , CV , Y D, SB) is almost
identical between the two adders, suggesting that most of the
area savings may be due to the lack of a carry tree in the LRC
version.

IV. DISCUSSION

The area and delay ratios between non-redundant, DMR,
and modified LRC adders are compared against the predicted
ratios of [2, Tbl. II], rather than converting the predictions
to absolute terms using the standard cell library’s FO4 delay
and NAND2 area. The predicted area and delay penalties for
DMR are 110% and 35% respectively, which fall within the
range of observed values. However, the predicted area and
delay penalties for a modified LRC error checker are 55%
and 60%–80% respectively, which Figures 1 and 2 show to be

pessimistic (in the case of delay) and optimistic (in the case
of area) by almost a factor of two, bringing the modified LRC
adder’s performance closer to that of a DMR adder.

Figure 3 suggests that digit-wise addition and decimal
correction dominate the area requirements for mixed bi-
nary/decimal addition, limiting the total area that can be
saved by eliminating carry propagation. Furthermore, the digit
corrections described in Section I-B are roughly as area-
intensive as decimal addition itself. These two factors combine
to make an LRC design less practical in decimal or mixed
applications than in binary applications.

REFERENCES

[1] M. B. Sullivan and E. E. Swartzlander, Jr., “Long residue
checking for adders,” in Proc. IEEE 23rd Int. Conf.
Application-Specific Systems, Architectures and Proces-
sors (ASAP), Jul. 2012, pp. 177–180. DOI: 10 . 1109 /
ASAP.2012.31.

[2] Á. Vázquez and E. Antelo, “A sum error detection
scheme for decimal arithmetic,” in Proc. IEEE 24th Symp.
Computer Arithmetic (ARITH), Jul. 2017. DOI: 10.1109/
arith.2017.34.

[3] R. Goldman, K. Bartleson, T. Wood, K. Kranen, V. Me-
likyan, and E. Babayan, “32/28nm Educational Design
Kit: Capabilities, deployment and future,” in Proc. IEEE
Asia Pacific Conf. Postgraduate Research in Microelec-
tronics and Electronics (PrimeAsia), Dec. 2013. DOI: 10.
1109/PrimeAsia.2013.6731222.

[4] “IEEE standard Verilog hardware description language,”
IEEE Std 1364-2001, Sep. 2001. DOI: 10 . 1109 /
IEEESTD.2001.93352.

[5] D. P. Agrawal, “Fast B.C.D./binary adder/subtractor,”
Electron. Lett., vol. 10, no. 8, Apr. 1974. DOI: 10.1049/el:
19740093.

[6] V. Naganathan, “A comparative analysis of parallel prefix
adders in 32nm and 45nm static CMOS technology,”
M.S. report, University of Texas at Austin, May 2015.
DOI: 10.15781/T2TP6P.

[7] R. E. Ladner and M. J. Fischer, “Parallel prefix compu-
tation,” JACM, vol. 27, no. 4, pp. 831–838, Oct. 1980.
DOI: 10.1145/322217.322232.

[8] “DW01 addsub adder/subtractor,” Synopsys, v. K-
2015.06-SP4, Jun. 2015. [Online]. Available: https : / /
www.synopsys.com/dw/ipdir.php?c=DW01 addsub.

https://doi.org/10.1109/ASAP.2012.31
https://doi.org/10.1109/ASAP.2012.31
https://doi.org/10.1109/arith.2017.34
https://doi.org/10.1109/arith.2017.34
https://doi.org/10.1109/PrimeAsia.2013.6731222
https://doi.org/10.1109/PrimeAsia.2013.6731222
https://doi.org/10.1109/IEEESTD.2001.93352
https://doi.org/10.1109/IEEESTD.2001.93352
https://doi.org/10.1049/el:19740093
https://doi.org/10.1049/el:19740093
https://doi.org/10.15781/T2TP6P
https://doi.org/10.1145/322217.322232
https://www.synopsys.com/dw/ipdir.php?c=DW01_addsub
https://www.synopsys.com/dw/ipdir.php?c=DW01_addsub

	Introduction and Related Work
	Two's-Complement Binary Error Checking
	Ten's-Complement Decimal Error Checking

	Methods
	Implementation
	Validation
	Performance Evaluation

	Results
	Validation
	Performance Evaluation

	Discussion

