
A Low-Cost Embedded SDR Solution for Prototyping and Experimentation

Christopher R. Anderson1, George Schaertl1, and Philip Balister2

1Wireless Measurements Group
Electrical and Computer Engineering Department

United States Naval Academy, Annapolis, MD 21402
2OpenSDR, Blacksburg, VA 24060

{canderso@usna.edu, gschaertl@gmail.com, philip@opensdr.com}

ABSTRACT

The release of a variety of embedded processor plat-

forms over the past few years has sparked an interest

in developing SDRs that are capable of operating on

moderate-performance hardware. Currently, the two

popular SDR frameworks-the SCA and GNU Radio-

have been employed almost exclusively on general

purpose processors. However, to utilize one of these

frameworks, embedded platforms must both maximize

the efficiency of the software as well as take advantage

of co-processors (such as FPGA’s) to perform compu-

tationally intensive tasks.

This paper presents the design and initial devel-

opment of a low-cost SDR platform based around

the Texas Instruments Beagleboard OMAP3 embed-

ded processing platform along with off-the-shelf radio

transceiver boards Initial performance results demon-

strate basic functionality of both the FPGA interface

board as well as the Beagleboard SDR engine. The

platform can not only be used for embedded SDR

applications, but is also valuable for low-cost SDR

prototyping and experimentation.

1. INTRODUCTION

Over the past decade, software-defined radios have

evolved from esoteric systems used by a handful of

researchers or hobbyists into mainstream communi-

cation systems that are operated by and relied upon

by government, military, and commercial end-users.

These systems have been able to take advantage of the

increasing amounts of power and performance offered

by advanced ADC’s, DSP’s, GPP’s, and FPGA’s in

order to meet the ever-increasing demands placed on

SDR systems. A wide variety of vendors produce

both general-purpose SDR platforms for commercial

or military use (e.g., [1]–[5]), and details on numerous

academically developed SDR platforms are available

in the literature.

The current generation of SDR systems, however,

are being severely challenged by a new set of user

requirements that has arisen over the past few years—

small size and weight, limited power consumption,

and long battery lifetimes. These requirements are

particularly poignant when developing SDR’s for man-

portable radios that may need to last for an 8-12 hour

mission or wireless sensor networks that may require

months or years of battery life. Meeting these demands

going forward will require hybrid architectures that

combine the best features of DSP’s, FPGA’s, ASIC’s,

and GPP’s with designs that are optimized for power

efficiency rather than raw processing performance. In

[6], the authors investigate the tradeoffs between DSP,

FPGA, GPP, and ASIC in the hardware design of

SDR’s, as well as hybrid solutions that combine the

best features of different devices. The authors observe

that one of the primary limitations to incorporating

the power and flexibility of FPGA’s and DSP’s in

SDRs are the complex design tools and highly specific

instruction sets which do not always integrate into a

C/C++ development environment.

One example of a hybrid system is [7], where

the authors implemented a combined FPGA/DSP ar-

chitecture to provide them with an extremely flexi-

ble platform for creating an SDR for receiving and

decoding Global Navigation Satellite Signals. Their

system utilizes the FPGA to process high-speed sample

data by performing digital downconversion, carrier

removal, and code correlation. The DSP can then focus

on tracking and baseband processing. Another hybrid

system example is [8] where the authors implement an

SDR capable of MIMO processing by using one DSP

and four FPGA’s. On their board, the FPGA’s are used

to demodulate the input signals, which frees up the

DSP to run smart antenna or other MIMO processing

algorithms.

Perhaps the most well-known hybrid SDR is the

Universal Software Radio Platform (USRP) and USR-



PII produced by Ettus Research [9]. Both versions of

the USRP utilize an FPGA to perform pre-processing

of data and either a USB or Gigabit Ethernet connec-

tion to send sample data to a GPP running an SDR

architecture. These platforms have become widely used

by industry, government, and academia, however, the

architecture is based around using a very powerful

GPP (such as an Intel Core2, AMD Athlon, or Cell

Broadband Engine). Both versions of the USRP pro-

vide a relatively portable platform, fairly low power

consumption, and–in conjunction with GNU Radio—

have become the de facto standard for academic re-

search platforms.

In order to meet the demands of smaller size

and lower power consumption, a key focus area in

future SDR development will be maximizing the ef-

ficiency of the hardware platform both through reduc-

ing software overhead and by utilizing co-processors

(such as FPGA’s) to perform computationally inten-

sive tasks. Furthermore, cost is a major concern for

SDRs deployed in applications such as wireless sensor

networks, where thousands or tens of thousands of

radios may be deployed in an area. To address these

issues, this paper presents the design and initial de-

velopment of a low-cost SDR platform based around

the Texas Instruments Beagleboard OMAP3 embedded

processing platform [10] along with off-the-shelf radio

transceiver boards.The platform can not only be used

for embedded SDR applications, but is also valuable

for low-cost SDR prototyping and experimentation.

2. THE BEAGLEBOARD AS AN SDR PLATFORM

The OMAP3 family from Texas instruments [11]

provides a low power processor that combines an ARM

general purpose processor (GPP) with a Texas Instru-

ments digital signal processor (DSP). The combination

of GPP/DSP processors and an external FPGA provide

the basis for a low cost/low power software defined

radio.

The introduction of the Beagleboard [10] in 2008

provided a low cost platform for experimenting with

the OMAP3 processor. Although the Beagle Board

does not expose the optimum interfaces available on

the OMAP3 for high speed data transfer to/from a

FPGA, it does provide a platform for proof of concept

applications. As discussed below, the hardware floating

point support allows easy use of software developed

on a desktop PC, without converting to a fixed point

implementation. The DSP permits the designer to

compare DSP implementations with GPP and FPGA

implementations.

The OMAP3 processor contains an ARM Cortex-

A8 GPP, an Image and Video Accelerator (IVA) based

on the TI C64x+ DSP and numerous support periph-

erals. Specific part versions provide various combina-

tions of DSP and graphics accelerators, including parts

available with only the Cortex-A8 processor and not

the DSP.

The Cortex-A8 processor [12] provides the armv7-

a instruction set with the thumb-2 extensions. Thumb-2

allows the use of shorter instructions that still execute

almost as fast as the conventional 32 bit instructions.

This leads to smaller code size, this reduces the amount

of non-volatile memory required for program storage.

The OMAP3 also contains a coprocessor that imple-

ments the VFP light and advanced SIMD instruction

(NEON) instructions. The NEON instructions operate

on a variety of data types including short vectors of

single precision floating point numbers and various

size integers. These are valuable instructions for SDR

applications.

The C64x+ processor is a VLIW design that sup-

ports eight functional units [13]. The eight functional

units include 2 16x16 multipliers and six ALU’s.

This architecture allows the processor to execute eight

instructions per clock cycle including two 16x16 mul-

tiplies per clock cycle. The DSP can access memory

via a MMU. This allows the DSP and GPP to operate

with hardware protection for their local memory. Un-

fortunately, the current TI dsplink software does not

make use of this feature.

For this project, our interest was focused on the

peripheral interfaces with the OMAP3 processor, which

can support cameras, LCD panels, various serial in-

terfaces, USB, different types of memory (such as

DDR, NAND and NOR flash), graphics accelerators

and JTAG interfaces. The Beagle board provides a

28 pin expansion connector. This connector exposes

several interfaces, including McSPI (Serial Peripheral

Interface) and MMC (Multi Media Controller). Al-

though the MMC interface has the ability to transfer 4

or 8 bits per clock cycle, the first implementation of the

interface to the FPGA uses the McSPI interface. The

McSPI controllers are multi-channel SPI interface. SPI

is a four wire serial interface with dedicated transmit

and receive lines. The OMAP3 controller can clock

the interface at up to 48 MHz. With 16-bit complex

samples, the McSPI interface can transfer up to 1.5

MHz of sampled bandwidth between the FPGA and

OMAP3. Newer Beagle Boards provide an EHCI USB

host interface that allows the connection of the Ettus

Research USRP. The EHCI provides another possible

hardware interface, although the FPGA on the USRP

does not have much room for custom FPGA process-

ing.
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Fig. 1. A block diagram of the Beagleboard SDR interface board.

3. INTERFACE BOARD HARDWARE DESIGN

A basic block diagram of the embedded SDR

system is shown in Figure 1. The system consists of a

commercially-available analog RF front end, a mixed-

signal front-end processor, FPGA, and digital interface

to the OMAP3 processor. To take advantage of the

existing open-source hardware and software resources,

the RF front end was designed to accept any of the

commercially available USRP Daughtercards [9]. The

RF front end then interfaces with an Analog Devices

AD9862 mixed-signal processor. Received sample data

is then input to an Altera Cyclone III FPGA.

The FPGA communicates to the OMAP3 pro-

cessor through two SPI (Serial Peripheral Interface)

ports on the Beagleboard expansion header. One of

the SPI ports is configured to stream transmit and

receive sample data between the FPGA and Beagle

at a maximum rate of 48 Mbps full-duplex. While

the AD9862’s has a 12-bit ADC and 14-bit DAC, the

OMAP3 SPI controller requires data to be framed in

16-bit words, and adds overhead in the form of delays

between words. As a result, the system is limited to

handling a maximum signal bandwidth of 1.0 MHz.

Bandwidths of up to approximately 6 MHz are pos-

sible by utlizing the Multi-Media Controller (MMC)

interface (which supports 384 Mbps half-duplex), how-

ever, implementing a controller for the MMC interface

is non-trivial and adds significant complexity to the

system.

As a result of the bandwidth limitations of the

SPI interface, the FPGA is primarily responsible for

performing processor-intensive routines, such as digital

up/downconversion, filtering, decimation or interpo-

lation, or any signal processing routines desired by

the user. Because of the expanded role of the FPGA

compared to the USRP, the FPGA interface board uses

a Cyclone III EP3C16, which provides faster operation

and more logic gates than the Cyclone I EP1C12 FPGA

on the USRP.

The FPGA interface board operates with a master

clock which runs at a frequency of 125 MHz. A clock

distribution chip divides the clock frequency in half

and routes the clock signal to the AD9862, FPGA, and

an off-board connector (for synchronizing additional

peripherals). Additionally, the clock distribution chip

will accept an external clock signal input at frequencies

of up to 128 MHz.

One of the major design goals and design chal-

lenge of the FPGA interface board was to implement

the board for a bill-of-materials cost of less than $500.

The initial design, however, was relatively complex,

requiring a 6-layer PCB with surface-mount compo-

nents on both sides, and had a bill-of-materials cost of

approximately $1,000. A second revision was able to

more efficiently implement the system, resulting in a

reduction of the bill-of-materials cost to approximately

$600. All design and documentation files for the board

are available on [14].

4. GNU RADIO ON THE BEAGLEBOARD

GNU Radio is a free software runtime environment

and set of DSP libraries for developing SDR systems.

Although GNU Radio is platform-independent, it is

designed to run on a desktop computer’s powerful

general-purpose processor. It makes heavy use of

hardware-accelerated floating point math and includes

support for the x86 architecture’s SSE/SSE2 SIMD

instructions. Hooks are provided to implement filtering

routines in hand-optimized assembly for other architec-

tures. [15] Where optimized routines do not exist for a

given architecture, a generic implementation (written in

portable C) is compiled and linked into the GNU Radio



libraries. On the BeagleBoard’s OMAP3 processor, a

256-tap FIR filter with real coefficients ran between 20

and 25 times faster using a dot product routine written

in ARMv7 assembly with NEON SIMD extensions

than the same filter using the generic routine. Ongoing

work focuses on including optimizations for ARMv7

and NEON in the fftw FFT library, as well as porting

code to the OMAP3’s on-chip floating point DSP.

GNU Radio can be compiled for the BeagleBoard,

along with the rest of a complete Linux distribution,

using the OpenEmbedded build system. OpenEmbed-

ded consists mainly of a set of ”recipes” telling the

bitbake build automation tool how to download,

configure, (cross-)compile, and package the binaries

for individual software packages, as well as for meta-

packages composing part or all of a complete system.

Once a recipe is created for a new package, it may

be cross-compiled in an environment already set up

by OpenEmbedded, then installed on top of a running

Linux system on the BeagleBoard. With an Ethernet

adapter or USB mass storage device connected to the

BeagleBoard, this allows code to be revised, recom-

piled, and tested without powering off the Beagle-

Board, loading the new binaries onto its MMC card,

and rebooting after every revision.

Once GNU Radio and any custom blocks have

been compiled and installed on the BeagleBoard, using

them is relatively simple. After importing the GNU

Radio libraries into Python, a class representing the

top-level flow graph is instantiated. The classes cor-

responding to each block are instantiated next, then

connected to the flow graph. Processing is started

or paused by calling the flow graph’s start() or

stop() methods. Blocks may be reconfigured on the

fly if they provide mutator methods, for example, to

change the taps on an FIR filter. If the flow graph is

temporarily stopped, blocks may be added, deleted, or

connected differently. Although GNU Radio includes

a set of blocks that may be used to create a GUI

with the wxWidgets library, OpenEmbedded does not

currently include a recipe to build the Python bindings

for wxWidgets.

5. DEVICE DRIVERS AND INTERFACING

The OMAP3 provides several ways to interface

with an FPGA, including: MMC, SPI, and GPMC. For

this project we used the McSPI interface for simplicity

and availability of the needed pins. Once the physical

interface was decided, a device driver was needed to

control the hardware and provide an interface to the

radio software.

The McSPI controllers on the OMAP3 provide

a four wire bi-directional serial interface. Additional

lines are available as chip selects so multiple devices

on a single bus may be controlled. The standard lines

are slave in master out (SIMO), slave out master in

(SOMI), clock and ground. The maximum clock rate

available from the OMAP3 controllers is 48 MHz.

Because the GPP runs Linux, the remainder of this

discussion is focused on Linux device drivers.

The Linux kernel driver interface is the tradi-

tional Unix model with open, close, read, write, ioctl,

etc [16]. The challenge for writing a driver for a SDR

system is to map the needed functions into this model.

Another possibility would be to write the driver using

the UIO framework [17], although at this time the UIO

framework does not support using the system DMA

controllers. The DMA controller is very useful for

transferring data from the FPGA to processor RAM

without involving the GPP.

The Linux kernel contains a driver for the SPI

controllers, greatly simplifying the code required for

the FPGA interface driver. This code provides a stan-

dard API for all SPI controllers supported by Linux.

By using this API, the driver can easily operate on

different hardware providing SPI controllers without

requiring changes to the driver code.

The hardware interface to the FPGA uses two of

the MCSPI controllers. One controller transfers data

to/from the FPGA for the signal processing chain.

The other is used to read and write control register

in the FPGA and the daughter boards. In the future,

provisions will be made for sending some control

signals embedded within the transmitted/received data

to provide synchronized setup and status with the data

samples.

The current version of the Linux MCSPI driver

does not support the hardware buffering function or the

use of DMA. Patches exist to enable these features, but

they require more work before they can be integrated

in to the Linux kernel. This leads to a measured

transfer rate lower than the theoretical maximum rate.

At this time we have not tested them to see how much

performance improvement the use of these features

provides.

6. DATA TRANSFER

An FPGA image created for testing the Linux

device driver loaded data into a FIFO. The output

side of the FIFO converted a 32 bit word to serial

for transmission to the SPI master on the OMAP3.

The input side of the FIFO was clocked by a free

running counter and loaded count data into the FIFO.

The output side is clocked by the SPI clock from

the OMAP3 SPI controller. Finally, the FPGA used

an OMAP3 GPIO pin to generate an interupt for the
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Fig. 2. A 2 MHz carrier with an amplitude of -10 dBm, BPSK-modulated with a pseudo-random bit sequence at 200 kbps, was connected to
the board through the LFRX daughterboard. The FPGA was configured to connect the ADCs digital output directly to the DACs digital input.
(a) and (b) show the input signal in the time and frequency domains; (c) and (d) show the DACs output through the LFTX daughterboard.

device driver when the FIFO contained 4096 bytes of

data; this triggered a SPI read cycle that read 4096

bytes.

A test program on the Beagleboard read data from

the device driver and did limited testing for dropped

samples. We observed that the driver started dropping

samples at about 3.5 Mbytes per second. Using 16 bit

complex samples, the interface supports signals with a

890 kHz bandwidth.

We expect that the transfer rate could be improved

by optimizing the SPI driver in the Linux kernel, how-

ever, even the un-optimized performance is adequate

for a variety of signals.

We also compared the amount of processor time

used by the driver with a similar program used to test

the Universal Software Peripheral(USRP) from Ettus

Research. The USRP connects to a host computer via

a USB high speed interface. We attached the USRP to

the Beagleboard’s EHCI host USB port and used the

test_usrp_standard_rx program to transfer the

same amount of data at a rate close to 1 Mbytes pers

second. Measuring the user and system times (using the

time command) showed that the SPI driver used much

less system time than the USB based USRP drivers.

The data transfer required a total of 132 seconds. The

SPI based interface used 0.42 seconds of system time

and the USB driver used 8 seconds of system time.

The reason for the performance difference is that the

SPI interface is significantly simpler than the USB

interface. The USB driver is receiving packets that

could be from many different devices and must direct

them to the proper destination. On a typical USRP

based system, the USRP is connected to a fast desktop

processor, however, for a small, low power system, it

is important to minimize processor time spent on all

aspects of the radio.

7. INITIAL PERFORMANCE RESULTS

To evaluate the performance of the Beagle-

board as an SDR platform, a GNU Radio block,

spi_srcsink_ss, was created for the BeagleBoard,

allowing GNU Radio applications to access the FPGA

using the SPI ports exposed on the BeagleBoard’s

expansion header. The block has been successfully

implemented in a GNU Radio flow graph, sending



16-bit samples approximately 1.25 MHz (full-duplex).

This will support a transmit and receive bandwidth of

up to 625 kHz to and from the signal processing logic

on the FPGA.

For the first test, the FPGA was loaded with a

VHDL design that connected the ADC’s digital output

directly to the DAC’s digital input, while making the

ADC’s control registers accessible to the BeagleBoard

over a SPI port. A signal generator and digital oscillo-

scope were connected to the board using the LFTX and

LFRX daughterboards available from [18]. The signal

generator was configured to create a BPSK waveform

at a frequency of 2.0 MHz using a 200 kbps pseudo-

random bit sequence. Figure 2 shows the time and

frequency domain plots of the signal input to the LFRX

receiver, as well as the time and frequency domain

plots of the output of the LFTX transmitter. From the

figures, we can observe that the Beagleboard was able

to successfully control the ADC by sending commands

to the ADC control register through one of the SPI

ports.

To evaluate the performance of the total system,

two other tests were performed: basic transmission of

an AM waveform and reception of an FM waveform.

For the AM test, audio samples stored on an SD card

connected to the Beagleboard were read into GNU

Radio, which generated a simple AM waveform at a

center frequency of 300 kHz. The Beagleboard then

transmitted the samples to the interface board which

broadcast the resulting waveform using the LFTX

daughtercard; an analog RF front end then upconverted

the rsulting signal to a center frequency of 905 MHz

and broadcast the resulting signal over the air. A

commercially-available radio was then used to verify

reception of the signal.

For the FM reception test, a commercially avail-

able radio front-end was use to downconvert a signal

from the FM Radio Band to an IF of 10.7 MHz. The

resulting signal was amplified, filtered, and input to

the LFRX daughtercard. The interface board digitally

downconverted the received waveform to a center

frequency of 300 kHz and transmitted the resulting

samples to the Beagleboard. GNU Radio (running

on the Beagleboard) was then used to downconvert,

demodulate, and output the baseband audio data in real

time.

Performance evaluation of the fully integrated sys-

tem with digital signals, such as FSK and BPSK, is

currently ongoing, and will utilize the second gener-

ation of the interface board and latest revision of the

Beagleboard.

8. CONCLUSIONS

In this paper, we have described the design, de-

velopment, and initial results of an embedded software

defined radio platform based around the OMAP3 pro-

cessor. The key hardware component of the system

is a low-cost FGPA interface board that can receive

and transmit signals via a USRP RF daughtercard.

The system is designed to perform the bulk of the

signal processing in the FPGA (filtering, downsam-

pling, digital downconversion, etc), before streaming

baseband samples to the OMAP3. Initial performance

tests utilized a full-duplex SPI interface between the

OMAP3 and FPGA, demonstrating that up to 1.5 MHz

of spectrum could be transfered in each direction.

The performance tests also demonstrated the ability

of GNU Radio running on the OMAP3 to control the

ADC and FPGA, as well as the ability to transmit

and receive simple waveforms. Overall, the platform

provides a very low-cost and low-power SDR platform

for research, experimentation, and prototyping.
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